Design of an Ultra-wideband, Low-noise Am- Plifier Using a Single Transistor: a Typical Application Example

نویسندگان

  • S. Demirel
  • F. Güneş
  • U. Özkaya
چکیده

In this work, a design method of an Ultra-Wideband (UWB), low-noise amplifier (LNA) is proposed exerting the performance limitations of a single high-quality discrete transistor. For this purpose, the compatible (Noise F , Input VSWR Vi, Gain GT ) triplets and their (ZS , ZL) terminations of a microwave transistor are exploited for the feasible design target space with the minimum noise Fmin(f), maximum gain GT max(f) and a low input VSWR Vi over the available bandwidth B. This multi-objective design procedure is reduced into syntheses of the Darlington equivalences of the ZSopt(f), ZL max(f) terminations with the Unit-elements and short-circuited stubs in the T -, L-, Π-configurations and Particle Swarm Intelligence is successfully implemented as a comparatively simple and efficient optimization tool into both verification of the design target space and the design process of the input and output matching circuits. A typical design example is given with its challenging performance in the simple Πand Π-configurations realizable by the microstrip line technology. Furthermore the performances of the synthesized amplifiers are compared using an analysis programme in MATLAB code and a microwave system simulator and verified to agree with each other.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Ultra-Wideband Low Noise Amplifier With Continuous Gain Control

This paper presents a new variable gain low noise amplifier (VG-LNA) for ultra-wideband (UWB) applications. The proposed VG-LNA uses a common-source (CS) with a shunt-shunt active feedback as an input stage to realize input matching and partial noise cancelling. An output stage consists of a gain-boosted CS cascode and a gain control circuit that moves the high resonant frequency to higher freq...

متن کامل

Low Noise Amplifier Application Using Negative Feedback for Ultra-wideband Applications

This paper presents a design of Ultra Wideband Low Noise Amplifier (LNA) with Negative Feedback and multisection matching network implementing on Microstrip design technique. The design started with selecting a transistor which is Super-low noise InGaAs HEMT MGF4937AM transistor that support ultra-wideband frequencies. In order to achieve ultra-wideband LNA, two different techniques which imple...

متن کامل

A High Gain and Forward Body Biastwo-stage Ultra-wideband Low Noise Amplifier with Inductive Feedback in 180 nm CMOS Process

This paper presents a two-stage low-noise ultra-wideband amplifier to obtain high and smooth gain in 180nm CMOS Technology. The proposed structure has two common source stages with inductive feedback. First stage is designed about 3GHz frequency and second stage is designed about 8GHz. In simulation, symmetric inductors of TSMC 0.18um CMOS technology in ADS software is used.Simulations results ...

متن کامل

A Modified Noise Analysis of a Common Source ̶ Common Gate Low Noise Transconductance Amplifier for Sub-micron Technologies

This paper is based on analysis of a common source - common gate low noise transconductance amplifier (CS-CG LNTA). Conventional noise analyses equations are modified by considering to the low output impedance of the sub-micron transistors and also, parasitic gate-source capacitance. The calculated equations are more accurate than calculated equations in other works. Also, analyses show that th...

متن کامل

Design an Ultra Wideband Low Noise Amplifier at 6 GHz Applications

This paper presents a ultra wideband low noise amplifier for 6GHz Applications. This proposed LNA is the extension of inductively common source amplifier and in this design we used transistor multifingering techniques in order to reduce noise and improves gain. This LNA is simulated by using UMC .18um CMOS mixed signal/RF process in cadence virtuoso. In this design, used current source biasing,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009